A general non-linear multilevel structural equation mixture model
نویسندگان
چکیده
منابع مشابه
A general non-linear multilevel structural equation mixture model
In the past 2 decades latent variable modeling has become a standard tool in the social sciences. In the same time period, traditional linear structural equation models have been extended to include non-linear interaction and quadratic effects (e.g., Klein and Moosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We present a general non-linear multilevel structural equation ...
متن کاملThe General Linear Model as Structural Equation Modeling
Statistical procedures based on the general linear model (GLM) share much in common with one another, both conceptually and practically. The use of structural equation modeling path diagrams as tools for teaching the GLM as a body of connected statistical procedures is presented. A heuristic data set is used to demonstrate a variety of univariate and multivariate statistics as structural models...
متن کاملMultilevel Structural Equation Modeling
In conventional structural equation models, all latent variables and indicators vary between units (typically subjects) and are assumed to be independent across units. The latter assumption is violated in multilevel settings where units are nested in clusters, leading to within-cluster dependence. Different approaches to extending structural equation models for such multilevel settings are exam...
متن کاملMultilevel Structural Equation Modeling
Iterative numerical procedures for the estimation of variance and covariance components for unbalanced designs were developed in the 1980s and were implemented in software packages such as MLWIN, SAS PROC MIXED and HLM. At the same time, interest in latent variables, that is, variables that cannot be directly observed or can only imperfectly be observed, led to the theory providing for the defi...
متن کاملMultilevel Regression and Multilevel Structural Equation Modeling
Multilevel modeling in general concerns models for relationships between variables defined at different levels of a hierarchical data set, which is often viewed as a multistage sample from a hierarchically structured population. Common applications are individuals within groups, repeated measures within individuals, longitudinal modeling, and cluster randomized trials. This chapter treats the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Psychology
سال: 2014
ISSN: 1664-1078
DOI: 10.3389/fpsyg.2014.00748